Residual-Prototype Generating Network for Generalized Zero-Shot Learning
نویسندگان
چکیده
Conventional zero-shot learning aims to train a classifier on training set (seen classes) recognize instances of novel classes (unseen by class-level semantic attributes. In generalized (GZSL), the needs both seen and unseen classes, which is problem extreme data imbalance. To solve this problem, feature generative methods have been proposed make up for lack classes. Current use class attributes as cues synthetic visual features, can be considered mapping attribute features. However, cannot effectively transfer knowledge learned from because information in features are asymmetric: contain key category description information, while consist that represented semantics. end, we propose residual-prototype-generating network (RPGN) GZSL extracts residual original an encoder–decoder synthesizes prototype associated with disentangle regressor. Experimental results show method achieves competitive four benchmark datasets significant gains.
منابع مشابه
Feature Generating Networks for Zero-Shot Learning
Suffering from the extreme training data imbalance between seen and unseen classes, most of existing state-of-theart approaches fail to achieve satisfactory results for the challenging generalized zero-shot learning task. To circumvent the need for labeled examples of unseen classes, we propose a novel generative adversarial network (GAN) that synthesizes CNN features conditioned on class-level...
متن کاملA Unified approach for Conventional Zero-shot, Generalized Zero-shot and Few-shot Learning
Prevalent techniques in zero-shot learning do not generalize well to other related problem scenarios. Here, we present a unified approach for conventional zero-shot, generalized zero-shot and few-shot learning problems. Our approach is based on a novel Class Adapting Principal Directions (CAPD) concept that allows multiple embeddings of image features into a semantic space. Given an image, our ...
متن کاملGeneralized Zero-Shot Learning via Synthesized Examples
We present a generative framework for generalized zeroshot learning where the training and test classes are not necessarily disjoint. Built upon a variational autoencoder based architecture, consisting of a probabilistic encoder and a probabilistic conditional decoder, our model can generate novel exemplars from seen/unseen classes, given their respective class attributes. These exemplars can s...
متن کاملZero-Shot Learning with Generative Latent Prototype Model
Zero-shot learning, which studies the problem of object classification for categories for which we have no training examples, is gaining increasing attention from community. Most existing ZSL methods exploit deterministic transfer learning via an in-between semantic embedding space. In this paper, we try to attack this problem from a generative probabilistic modelling perspective. We assume for...
متن کاملZero-Shot Learning on Semantic Class Prototype Graph.
Zero-Shot Learning (ZSL) for visual recognition is typically achieved by exploiting a semantic embedding space. In such a space, both seen and unseen class labels as well as image features can be embedded so that the similarity among them can be measured directly. In this work, we consider that the key to effective ZSL is to compute an optimal distance metric in the semantic embedding space. Ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10193587